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Abstract

This report is an attempt to determine the unknown parameters of the COVID-19 spread
dynamics in 18 different regions of six countries. With the help of Bayesian analysis we
investigated how well a SIR model could be fitted on the currently available COVID-19
time series. Additionally to the standard SIR parameters (R0, γ), we considered the size of
the infected population also as unknown as there aren’t available any generally homogeneous
and reliable data on it. Based on the data of deceased people we’ve found that even with
fairly loose prior distributions a SIR model could be well fitted. The regions/states where
this simple model was well fitting were in countries without active control of the virus spread
(regions mostly in England, Italy, Spain and US). We observed that in these regions R0 is
ranging between 1.41 and 12.7 at 95% of confidence and has an average of 6.51, definitely
larger value than the currently accepted one. We also determined that for these regions
the mortality rate was very consistently around 0.1%. The most important outcome of this
analysis is that if our prior assumptions are true then within most of the regions only a very
small proportion of COVID-19 cases (around 0.3-1%) were discovered and they practically
achieved herd immunity as of the beginning of May, 2020.

1 Introduction

In many analytical tasks on COVID-19 data, one of the most desired input parameter is the size
of the infected population. Despite its importance the publicly available data on the confirmed
cases could be considered as unreliable due to the following reasons:

• There is no way of overall testing of the whole population and the selection methods are
changing not only from one region to another but over time as well.

• Certainly the selection for testing is mostly based on (sometimes ad-hoc) diagnostic and
spread-prevention considerations which introduces a non-negligible but practically un-
known bias.

• There is no unison definition of a COVID-19 case.

• The reporting date of a case could depend on a lot of factors which do not reflect the
progress of the disease itself rather due some fluctuating administrative time lags. That
could lead to erroneous/useless time series data even if the ”grand total” is more or less
correct.

To obtain this very important but still unknown parameter we employed Bayesian analysis on
the time series data of the people deceased due to COVID-19. The previously depicted problems
related to the confirmed cases are also plaguing the data of the deceased ones albeit rather less
extent. When we selected the countries for analysis we considered the availability of regional
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data, the reliability of data (we haven’t taken into account countries where large scale data
forgery could be suspected) and having large number of confirmed cases. Beside these we focused
our attention on countries which aren’t doing active control of the virus spread which makes a
homogeneous dynamic assumption more plausible. With these requirements we used the data
of six countries: England, France, Germany, Italy, Spain and US. Although Germany has taken
very thorough and well-thought measures against the virus, we included it in our analysis to see
how our method is working (or not working) on it. In each country we selected the top three
regions regarding the number of confirmed cases. Ultimately we have analysed these 18 regions:

Country Region Confirmed cases Deceased Population
ENG London 25 357 5 282 8 908 081
ENG Midlands 21 443 4 325 10 704 906
ENG North West 21 000 3 289 7 292 093
ESP Community of Madrid 63 416 8 466 6 663 394
ESP Catalonia 50 924 5 345 7 675 217
ESP Castile and León 17 520 1 847 2 399 548

FRA Île-de-France 7 660 6 347 12 174 880
FRA Grand Est 3 395 3 037 5 549 586
FRA Hauts-de-France 3 011 1 480 6 003 815
GER Bayern 43 371 2 001 13 076 721
GER Nordrhein-Westfalen 33 977 1 358 17 932 651
GER Baden-Württemberg 32 576 1 481 11 069 533
ITA Lombardia 79 369 14 611 9 756 932
ITA Piemonte 27 939 3 247 4 356 397
ITA Emilia-Romagna 26 379 3 737 4 459 477
US New York 380 897 25 124 19 453 561
US New Jersey 130 593 8 244 8 882 190
US Massachusetts 70 271 4 212 6 892 503

During the analysis we used the following assumptions:

• Within a selected region and within the time frame of the lockdown the dynamics of the
spread could be described with a basic SIR model, i.e. with the following set of differential
equations:

Ṡ = −βIS
N

;

İ =
βIS

N
− γI;

Ṙ = γI.

where S is the stock of susceptible population, I is the stock of infected population and R
is the stock of removed (recovered or dead). The two constants β and γ are parameters of
the model and N is the size of population for which we use the region population. Instead
of β we will use the basic reproduction number R0 = β/γ. The main reason behind using
such a simple model (if not the simplest) was the fact that we are fitting model on a very
noisy and contaminated data. By the ”less parameter - less trouble” principle we usually
get to more stable and reliable models.

• The known (or reported) number of COVID-19 deaths equals to the actual number of
deaths. We know that this assumption is not entirely true, for example a few countries -
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like France - have not included in their regional reports the COVID-19 death cases in care
homes. However we may assume that these errors are not causing larger deviances than a
factor of two.

• As we consider all the dynamical variables of the SIR model as unknown, we have to
connect them to the dead cases. Therefore we assume that for each region there is a
constant mortality rate m which connects the predicted number of the deceased people to
the removed stock through Dpred

i = mRpred
i .

• Due to the constraint S + I + R = N , we have two independent dynamical variables. To
make the initial values well-posed we have to introduce a new parameter i0 which is the
proportion of infected at the time of the first data point. This makes our model a four-
parameter model with parameter set (R0, γ,m, i0). We don’t assume that any of these
parameters have the same value for different regions, however it is convincing if you see
similar values for γ and m as they aren’t depending on the counter-measures against the
virus spread.

• The likelihood function was calculated as a product of independent binomial distributions
B(δDi|n = N, p = δDpred

i /N) for each observations, where δDi is the reported, δDpred
i is

the predicted number of daily deaths.

• For Bayesian analysis we will use the following priors:

R0 ∼ lognormal(median = 3, σ = 0.921);

γ ∼ lognormal(median = 0.05, σ = 1.151);

m ∼ lognormal(median = 0.01, σ = 2.303);

i0 ∼ lognormal(median = 0.01, σ = 3.454).

2 Data preparation

We tried to collect all the data from their original sources[1][2][3][4][6][7]. The only exception
was the US data because in that case each state providing their data individually[5]. Therefore
we downloaded an aggregated data maintained by Johns Hopkins University.

Visual exploration of the data uncovered a few problems with it. Should these problems
remain unhandled it’d lead to biased and unstable models. For example in case of Lombardy
region the time series of daily deaths looks like this:
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Figure 1: Daily deaths in Lombardy

Obviously the time series has sudden changes, or spikes which cannot be attributed neither
to changes of dynamics (it is too fast) nor to statistical fluctuations (too large for a binomial like
distribution). We attribute this to some administrative delays or pile-ups of reporting. To get
rid of these spikes we smoothed the the cumulative number of deceased people by averaging, i.e.

D′i = (Di−1DiDi+1)1/3

We used here geometric mean instead of arithmetic mean because it handles better an ex-
ponentially changing time series. Smoothed daily deaths δD′i is calculated from this one as
δD′i = D′i −D′i−1. Further on we will use this smoothed time series in our calculations.

There were other regions which were plagued by more serious issues with data. For example,
in case of New York state after 23rd Apr the cumulative number of deaths began to decline
(which is obviously a marker for erroneous data):

Figure 2: Daily deaths in New York State
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In this case there was no other option than to shrink the relevant time interval till it haven’t
contained this erratic observations.

3 Bayesian analysis

To calculate posterior probabilities we employed Markov Chain Monte Carlo method. Technically
we used the proc mcmc procedure of SAS. The code, the data and the results are available in
dedicated github project[8], please refer to this for the exact parametrization of MCMC.

3.1 Goodness of fit of the SIR model

To quantify the goodness of fit in a meaningful way we defined the median relative deviation as
the median of the residual-prediction ratio,

median
i=day1...dayN


∣∣∣δD′i − δDpred

i

∣∣∣
δDpred

i

 ,

so in layman’s terms it is an ”average” of model error percentage. We used median instead of
mean because the latter is more sensitive on outliers (and our data is widely polluted with them).
The posterior analysis of the median relative deviation leads to the following regional statistics:

Country Region Mean StdDev HPDLower HPDUpper Selected
ENG Midlands 4.05% 0.86% 2.73% 5.91% Yes
US New York 4.45% 0.62% 3.25% 5.68% Yes

ENG London 4.90% 0.92% 3.27% 6.75% Yes
ENG North West 5.55% 0.77% 4.02% 6.97% Yes
ESP Community of Madrid 6.26% 0.59% 5.12% 7.55% Yes
ESP Castile and León 6.75% 1.05% 4.84% 8.84% Yes
ITA Emilia-Romagna 7.90% 0.81% 6.44% 9.56% Yes
FRA Grand Est 9.01% 1.02% 7.03% 10.99% Yes
ITA Lombardia 11.30% 0.41% 10.50% 12.11% Yes
ITA Piemonte 11.69% 1.55% 8.78% 14.64% Yes

FRA Île-de-France 12.13% 1.20% 9.94% 14.42% Yes

ESP Catalonia 15.92% 0.97% 14.30% 17.89% No
US Massachusetts 15.99% 0.94% 14.17% 17.83% No

FRA Hauts-de-France 16.44% 1.26% 14.60% 19.12% No
GER Baden-Württemberg 17.64% 1.59% 14.52% 20.74% No
GER Nordrhein-Westfalen 18.11% 1.52% 15.36% 21.33% No
US New Jersey 18.84% 1.05% 16.75% 20.93% No

GER Bayern 19.60% 1.09% 17.39% 21.81% No

From this table one can conclude that there are two clusters of regions regarding the median
relative deviation, one with values below 15% and the other with larger than 15% and there is a
large gap between the two. It is remarkable that of all the German regions are in the group of
weaker fit: this could be explained by the active control employed by German authorities which
makes the dynamics far more complex to be described by a simple SIR model. However there
are other regions falling into this group like Catalonia or New Jersey. For these it seems likely
that the quality of the data is the real culprit: in New Jersey the weekly seasonality is so strong
that the within week changes are larger than the monthly change, rendering the model fitting
unreliable. So we decided to focus our attention on the stronger group and the overall statistics
of the parameters are based only on the eleven members of this one:

• England: London, Midlands, North West
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• France: Île-de-France, Grand Est

• Italy: Lombardia, Piemonte, Emilia-Romagna

• Spain: Community of Madrid, Castile and León

• US: New York

From now on, we will refer to these regions as the selected group.

3.2 Posterior predictions

With the help of posterior sample we can produce the prediction estimates. To give some insight
on the accuracy, here are two regions where the actual model fits very well:

(a) London (b) Madrid

Figure 3: Daily death counts with good model fit(predicted vs actual)

Apart from a few spikes - which were more or less eliminated by the geometrical mean
smoothing - the actual values are very close to the predicted ones and additionally, the uncertainty
(HPD) range is fairly narrow. A significantly worse (though not very bad) fit could be seen for
the nonselected regions. Two representative examples could be seen below:

(a) Nordrhein-Westfalen (b) New Jersey

Figure 4: Daily death counts with bad model fit(predicted vs actual)

In case of Nordrhein-Westfallen the actual data is not extremely noisy, so one may suspect
that here the SIR model itself was too simple to provide a good fit. Contrary, on the time series
of New Jersey signs of extreme seasonality and other noise could be seen and that is an important
factor behind bad model fitting.
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3.3 Posterior statistics of model parameters

3.3.1 Posteriors for R0

Regional statistics:

Country Region Mean StdDev HPDLower HPDUpper Selected
ENG London 2.5809 0.3538 1.8904 3.2661 Yes
ENG Midlands 4.6868 0.7222 3.2744 6.0624 Yes
ENG North West 4.4788 0.6322 3.3443 5.8111 Yes
ESP Castile and León 8.4515 1.0105 6.5409 10.4934 Yes
ESP Catalonia 15.9582 1.6285 12.8363 19.1596 No
ESP Community of Madrid 6.8405 0.4470 6.0063 7.7180 Yes
FRA Grand Est 6.0669 1.0298 4.2226 8.2106 Yes
FRA Hauts-de-France 5.0371 0.8531 3.4261 6.7114 No

FRA Île-de-France 6.5734 1.1141 4.4018 8.7178 Yes
GER Baden-Württemberg 2.4625 0.3228 1.7783 3.0429 No
GER Bayern 3.2071 0.3653 2.5329 3.9791 No
GER Nordrhein-Westfalen 1.6916 0.2301 1.2448 2.1053 No
ITA Emilia-Romagna 7.7059 1.3599 5.3132 10.5080 Yes
ITA Lombardia 6.7552 0.3832 5.9764 7.4867 Yes
ITA Piemonte 2.2933 0.5579 1.2858 3.3286 Yes
US Massachusetts 2.7025 0.7358 1.4578 4.0579 No
US New Jersey 22.3195 5.5975 13.6574 33.6495 No
US New York 15.2264 8.1769 4.4892 30.8782 Yes

Overall statistics for the selected group:

Mean StdDev HPDLower HPDUpper
6.5145 4.2203 1.4069 12.7140

It could be seen that for the selected the regions, R0 is more consistent than for the nonselected
ones. This reassuring about the correctness of the SIR model as our prior distribution on R0

would have allowed far larger excursions. It is also remarkable that the mean of R0 is 6.51 which
is larger than most of the values given in the literature which - as of writing this report - is
ranging between 1.4 and 5.7. It also could be seen that the mean values are highly differing
between some regions (two extremes are London with 2.6 and New York with 15.2). This is
normal as counter-measures and local social habits are differing as well and these factors could
have significant impact on R0. For the nonselected group we can even see more extremal values
which supports our previous decision of omitting them from further analysis.
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3.3.2 Posteriors for γ

Regional statistics:

Country Region Mean StdDev HPDLower HPDUpper Selected
ENG London 0.1206 0.0176 0.0886 0.1537 Yes
ENG Midlands 0.0622 0.00731 0.0493 0.0774 Yes
ENG North West 0.0703 0.00859 0.0546 0.0882 Yes
ESP Castile and León 0.0491 0.00368 0.0420 0.0562 Yes
ESP Catalonia 0.0282 0.00174 0.0249 0.0317 No
ESP Community of Madrid 0.0554 0.00189 0.0518 0.0590 Yes
FRA Grand Est 0.0507 0.00388 0.0436 0.0583 Yes
FRA Hauts-de-France 0.0593 0.00883 0.0432 0.0765 No

FRA Île-de-France 0.0527 0.00451 0.0448 0.0620 Yes
GER Baden-Württemberg 0.1668 0.0288 0.1181 0.2244 No
GER Bayern 0.1271 0.0145 0.1006 0.1549 No
GER Nordrhein-Westfalen 0.3185 0.1112 0.1628 0.5549 No
ITA Emilia-Romagna 0.0324 0.00335 0.0263 0.0391 Yes
ITA Lombardia 0.0417 0.00141 0.0392 0.0447 Yes
ITA Piemonte 0.1102 0.0498 0.0476 0.2054 Yes
US Massachusetts 0.1199 0.0535 0.0405 0.2250 No
US New Jersey 0.0133 0.00275 0.00827 0.0189 No
US New York 0.0290 0.0137 0.00733 0.0565 Yes

Overall statistics for the selected group:

Mean StdDev HPDLower HPDUpper
0.0613 0.0327 0.0131 0.1304

The value of 0.061 1/day is equivalent to an infectious halving time of 11 days. It is noticeable
that the German regions has unrealistically high values for γ, although it doesn’t contradict our
previous observation that SIR model isn’t eligible to describe the German situation. However
London had a very good and also Piemonte had a fairly good fit, and they still have about a twice
of the γ of other regions. We don’t have any explanation for that at the moment. Nevertheless,
the nine other selected regions has fairly consistent values.

3.3.3 Posteriors for mortality rate

Regional statistics:

Country Region Mean StdDev HPDLower HPDUpper Selected
ENG London 0.06% 0.003% 0.06% 0.07% Yes
ENG Midlands 0.05% 0.001% 0.04% 0.05% Yes
ENG North West 0.05% 0.001% 0.05% 0.05% Yes
ESP Castile and León 0.09% 0.003% 0.08% 0.09% Yes
ESP Catalonia 0.10% 0.003% 0.09% 0.11% No
ESP Community of Madrid 0.14% 0.002% 0.13% 0.14% Yes
FRA Grand Est 0.06% 0.001% 0.05% 0.06% Yes
FRA Hauts-de-France 0.03% 0.001% 0.03% 0.03% No

FRA Île-de-France 0.06% 0.001% 0.05% 0.06% Yes
GER Baden-Württemberg 0.01% 0.001% 0.01% 0.02% No
GER Bayern 0.02% 0.000% 0.02% 0.02% No
GER Nordrhein-Westfalen 0.01% 0.002% 0.01% 0.02% No
ITA Emilia-Romagna 0.10% 0.004% 0.10% 0.11% Yes
ITA Lombardia 0.17% 0.002% 0.16% 0.17% Yes
ITA Piemonte 0.10% 0.016% 0.09% 0.13% Yes
US Massachusetts 0.10% 0.008% 0.09% 0.11% No
US New Jersey 0.29% 0.050% 0.21% 0.39% No
US New York 0.22% 0.096% 0.10% 0.40% Yes
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Overall statistics for the selected group:

Mean StdDev HPDLower HPDUpper
0.10% 0.06% 0.04% 0.19%

That is very convincing about the righteousness of our assumptions: the mortality rates for
the selected regions are very close to each other despite we’ve given a very loose prior for the
mortality rate. The extremal values are belonging to regions excluded from the analysis.

3.3.4 Posteriors for i0

Regional statistics:

Country Region Mean StdDev HPDLower HPDUpper Selected
ENG London 0.1094 0.0155 0.0794 0.1400 Yes
ENG Midlands 0.1260 0.0110 0.1039 0.1470 Yes
ENG North West 0.0592 0.00585 0.0479 0.0704 Yes
ESP Castile and León 0.0339 0.00573 0.0230 0.0452 Yes
ESP Catalonia 0.0286 0.00381 0.0217 0.0365 No
ESP Community of Madrid 0.1183 0.00680 0.1050 0.1309 Yes
FRA Grand Est 0.3722 0.0252 0.3234 0.4214 Yes
FRA Hauts-de-France 0.0387 0.00579 0.0271 0.0495 No

FRA Île-de-France 0.2403 0.0154 0.2104 0.2697 Yes
GER Baden-Württemberg 0.0101 0.00150 0.00697 0.0129 No
GER Bayern 0.00733 0.000900 0.00558 0.00903 No
GER Nordrhein-Westfalen 0.00475 0.00162 0.00158 0.00775 No
ITA Emilia-Romagna 0.1603 0.0150 0.1330 0.1918 Yes
ITA Lombardia 0.1281 0.00556 0.1167 0.1382 Yes
ITA Piemonte 0.0254 0.00923 0.00795 0.0428 Yes
US Massachusetts 0.00881 0.00297 0.00249 0.0142 No
US New Jersey 0.0340 0.00289 0.0282 0.0393 No
US New York 0.0442 0.00481 0.0343 0.0530 Yes

Overall statistics for the selected group:

Mean StdDev HPDLower HPDUpper
0.1288 0.0984 0.0113 0.3722

As the i0 parameter is an initial value of the SIR model and highly depends on the more or
less arbitrarily selected starting date, it doesn’t have too much descriptive value. However we
present it for the sake of completeness.

9



3.4 Association between the model parameters

We can visualize the connection between the model parameters through some scatter plots:

Figure 5: Posterior means of R0 and γ

This strong inverse connection between R0 and γ could be explained simply as if a certain
region quickly separates the infectious cases (so achieves a higher γ) then it will reduce the
reproduction ratio, provided by the β parameter (the daily disease transfer rate) doesn’t varying
too much. The latter happens to be true, which could be seen on the diagram below, as β is
ranging between 0.23 and 0.41. It is also noticeable that there aren’t any significant association
between γ and β.

Figure 6: Posterior means of β and γ
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The connection between the mortality and γ could be seen on the diagram below:

Figure 7: Posterior means of mortality and γ

4 Modeling the infectious stock

By putting together all these analytics we are in the position to answer the original question:
how many COVID-19 cases we have? We can calculate the (predicted) number of the infectious
cases and we can even compare it with the number of confirmed cases. What we can see on
selected regions which began to struggle with the virus at an earlier time they have practically
achieved herd immunity and the new confirmed cases and deaths which we can see even now are
the remnants from the past three-four weeks when the outbreak was still in it’s active phase.
These are two examples for that type of region:

(a) Lombardy (b) Madrid

Figure 8: Total case counts (predicted vs actual)

On the other hand there are regions which have not yet arrived to herd immunity, although
they are very close (within a few weeks) to it. The time series of the total cases looks like this:

11



(a) London (b) Piemonte

Figure 9: Total case counts (predicted vs actual)

It is important to note, that the predicted and actual cases are running on totally different
scales, practically less than 1% is detected by virus test.

5 Conclusions

Provided by that our assumptions are not totally wrong, the following conclusions could be
drawn from this analysis:

• The R0 value is larger than previously thought;

• The average of infectious halving time is about 11 days;

• Mortality is about 0.1 %;

• A very large proportion of the infected population (>99%) remains unnoticed.
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